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ABSTRACT 
Magnetic resonance elastography (MRE) is a constantly advancing technique for assessment of 
stiffness of tissues with newer technology and sequences. It is being increasingly used for the 
assessment of liver fibrosis. In this article, we discuss the advantages of MRE over biopsy and 
noninvasive methods such as US elastography in the assessment of liver fibrosis. Image acquisi-
tion and interpretation of liver MRE is also discussed.
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Elastography is a method of assessing the mechanical properties of tissues and can be 
performed with ultrasonography (US) and magnetic resonance imaging (MRI) tech-
niques. Magnetic resonance elastography (MRE) is used to evaluate tissue stiffness in 

diverse organs such as liver, breast, muscle, kidney, and spleen. It has been proven to be highly 
sensitive for various clinical applications, particularly in the detection of liver fibrosis (1–3).

Any chronic insult to the liver can cause persistent wound healing resulting in hepatic pa-
renchymal fibrosis. The diagnosis and staging of fibrosis is important for the management 
of chronic liver disease. Various imaging modalities and blood tests can be used to detect 
fibrosis (2). The standard method for definitive diagnosis and staging of fibrosis is biopsy. 
However, besides its well-known risks and complications, it has some limitations such as 
sampling error and inter- and intraobserver variability, which cause many physicians to re-
frain from it (1–3). 

MRE is a noninvasive alternative of liver biopsy in the detection of fibrosis causing increased 
hepatic stiffness (3). MRE enables evaluation of etiology and complications of chronic liver 
disease using standard MRI protocols during the same session of elastography. This method is 
superior to US elastography since the latter has significant limitations such as operator depen-
dence and measurement difficulties in cases of ascites and severe obesity (2, 3).

In this review, we summarized the current state of understanding on MRE as reported in 
the literature. We briefly described the procedure, highlighted the strengths and weakness-
es of the method and discussed its utility in the assessment of liver fibrosis.

The basic principle of elastography
The elasticity of a material defines its ability to sustain its original size and shape when 

the material is subjected to deforming force or stress. The change in size or shape known 
as “strain” is the force exerted on a unit area. Elastography is an imaging technique that 
monitors and measures the mechanical properties of biological tissues (1–4). Measuring 
the response of a particular mechanical stimulus is the basic principle of elastography. 
The stimuli can be static, quasistatic, or dynamic. The examinations with static/quasistat-
ic stimuli provide “strain” images while dynamic mechanical tissue stimulation enables 
“shear-wave” imaging. Dynamic stimulation can be “transient” or “continuous”. Dynamic 
stimulus-based techniques use vibrations between 20 Hz and 500 Hz and examine the 
characteristics of the waves produced by vibrations propagating throughout the tissue. 
Shear-wave based US elastography (transient) and MRE (continuous) are dynamic stimu-
lation techniques (1–5).
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MRE technique
MRE is a method used to characterize the 

biomechanical properties of tissues such 
as stiffness (2). In this technique, mechan-
ical shear wave is applied to the tissues. 
This repulsive acoustic force causes small 
displacements in the tissue. These displace-
ments, which occur in the horizontal plane, 
are called “shear waves” (5). If the waves 
are applied continuously, the propagation 
speed is reflected in the wavelength. Prop-
agation speed of these waves depends on 
the medium. As the stiffness of the tissue 
increases, the wavelength becomes longer 
(waves travel faster in hard tissues) (3). The 
biologic property on which measurement is 
based is the difference in the wavelengths 
of shear waves propagated through tissue 
depending on the stiffness of the tissue .

The mechanical waves are produced by a 
wave generator (also named as active driv-
er), which is located outside the MRI exam-
ination room and shielded from the imag-
ing magnet. Based on clinical studies, 60 Hz 
waves, which are frequently used to provide 
adequate wave conduction in the tissues, do 
not compromise the patient comfort. The 
mechanical waves (vibrational energy; pres-
sure waves) are sent to the passive driver 
through the flexible plastic connecting tube. 
The passive driver is placed on the external 
abdominal wall and is positioned across the 
lower chest or on the right lobe of the liver 
(Fig. 1) and secured with soft elastic band 
to maintain appropriate contact with the 
right upper quadrant rib cage. In situations 

when there is anatomic alterations in size 
or configuration of the liver or when the 
intestines interpose between the liver and 
anterior abdominal wall, the position of the 
driver can be shifted in order to optimize the 
delivery of the vibrations into the liver. The 
passive driver transmits acoustic pressure 
to the abdominal wall and to the liver in the 
form of shear waves (1–3). The propagating 
shear waves through the liver are imaged 
with modified phase-contrast gradient-echo 
(GRE) sequence, which incorporates cy-
clic motion-encoding gradients sensitive 
to through-plane motion. This sequence is 
called “MRE sequence” (5). The driver system 
is synchronized to these gradients by means 
of a trigger in the MRI scanner (1–3, 5).

Generally four axial slices at different an-
atomic levels of the liver are acquired with 
modified GRE sequence. The sequence 
parameters used in our 1.5T MRI system 
(Siemens, MAGNETOM Aera) are as follows: 
repetition time (TR)/echo time (TE), 50/21.1 
ms; flip angle 25°; bandwidth 250 Hz/pix-
el; field-of-view (FOV), 400×400; matrix, 
128×48; NEX, 1; slice thickness, 10 mm. The 
scanning time of each axial slice is 17 sec-
onds with breath-hold.

The tissue displacement at the nanome-
ter or micrometer level is measured by the 
MRE sequence. Two groups of raw images, 

magnitude and phase images (Fig. 2a, 2b), 
are obtained which give information about 
the progression of the “shear waves” in the 
liver. Magnitude and phase images are au-
tomatically processed using an inversion 
algorithm to generate a two-dimensional 
(2D) displacement map called “wave image” 
(Fig. 2c) and a 2D gray or color code map 
called “elastogram” (Fig. 2d) in which the liv-
er stiffness is measured (6, 7). 

The mechanical property measured by the 
inversion algorithm is “the magnitude of the 
complex shear modulus”. This measurement 
shows both the properties of tissue elastic-
ity and tissue viscosity (i.e., viscoelasticity) 
in units of kilopascals (kPa). At present, all 
major vendors offer commercially available 
elastograms using the same standard color 
scale of 0–8 kPa. In some imaging devices, 
“confidence maps” (Fig. 2e) with statistically 
reliable areas corresponding to the regions 
with adequate wave quality are included (1, 
8). Cine studies are obtained by repeatedly 
imaging the liver at a single slice location 
and performed using wave images through-
out eight different phase offsets. 

Interpretation of 
elastograms

Liver stiffness is assessed by drawing free-
hand region of interest (ROI) in the elasto-

Main points

• Magnetic resonance elastography (MRE) is a 
phase-contrast MRI technique that is used to 
noninvasively and quantitatively assess tissue 
stiffness.

• MRE has proven to be a robust, reproducible 
and reliable method for detection and stag-
ing of liver fibrosis caused by many different 
chronic liver diseases.

• MRE can be implemented onto a conventional 
MRI system with a few hardware and software 
modifications.

• By measuring the wavelenghts of the shear 
waves, it is possible to calculate the tissue vis-
coelasticity, which is expressed in units of kilo-
pascals.

• Ascites, hepatodiaphragmatic interposition of 
the bowel loops, and obesity which limit the 
use of US elastography, do not seem to affect 
the MRE examination.

Figure 1. Disc-shaped passive driver. Its flat surface touching the patient is made of drum-like elastic 
membrane. Plastic connecting tube transports the acoustic wave originating from the generator, 
known as the active driver (not shown) which is located outside the MRI examination room, to the 
passive driver. Passive driver is placed over the liver and held in place by an elastic binder. Continuous 
low frequency (60 Hz) vibrations are delivered into the liver from the surface of lower rib cage.
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grams. The ROIs should be placed in areas 
with adequate wave amplitude. The edge 
of the liver should not be approached more 
than half a wavelength as it may cause edge 
effects. Hot spots (coded with red color), 
which are typically found under the passive 
driver, should be excluded. In addition, spe-
cial care should be taken when placing an 
ROI to avoid regions of wave interference, 
large vessels (> 3 mm), severely dilated bile 
ducts, gallbladder fossa, widened liver fis-
sures, and obvious image artifacts within 
the liver. Mean stiffness from each ROI is 
obtained. Mean value obtained from four 
different levels of the liver and range of 
measurements are reported (1, 3).

In normal livers, the wavelength is short-
er and stiffness values measured from the 
elastograms are lower (Fig. 3). Because of 
the relatively rapid attenuation of the waves 
in soft hepatic tissue, propagation depth 
into the parenchyma is restricted and, con-
sequently, smaller regions of confidence 
may be encountered in normal nonfibrot-
ic livers. In fibrotic and cirrhotic liver, the 
wavelength is longer and stiffness values of 
liver parenchyma are higher (9–15) (Fig. 4). 

Liver fibrosis and diagnostic 
methods

Liver fibrosis is caused by excessive ac-
cumulation of extracellular matrix proteins. 

This accumulation results in the induction 
of hepatocyte necroinflammation and 
the differentiation of hepatic stellate cells 
into myofibroblasts. Necroinflammation is 
a response to wound healing developed 
against liver damage in some liver diseases 
(16). Viral hepatitis (B, C, delta), excessive 
alcohol consumption, nonalcoholic fatty 
liver disease (NAFLD), autoimmune hepa-
titis, some metabolic and genetic diseases 
are among the causes leading to hepatic 
fibrosis (17, 18). In early stages, fibrosis can 
be reversible. Early detection of fibrosis is 
therefore of great importance in the man-
agement of chronic liver disease (1–4, 9–11, 
17). Untreated fibrosis cases progress to cir-

Figure 2. a–e. MRE images of a 68-year-old 
woman with chronic liver diasease. Magnitude 
image (a), phase image (b), wave image (c), 
color-coded elastogram (d), and confidence map 
(e). Liver tissue stiffness values are measured on 
confidence map by drawing largest possible ROIs 
on four different levels of liver. Cross-hatched 
regions on confidence map are areas of low-
confidence data excluded by the processing 
algorithm. Nonparenchymal structures (i.e., large 
vessels, bile ducts, gall bladder) that will affect 
measurement should be avoided while drawing 
the ROI. The mean value and range of liver 
stiffness are reported in units of kPa. The mean 
hepatic stifness value in this patient is measured 
as 3.7 kPa (range, 2.80–4.33 kPa). Note also 
increased stiffness in the splenic parenchyma.

d

a

e

b c

Figure 3. a–c. An 81-year-old woman with postcholecystectomy syndrome. T2-weighted image (a), wave image (b), and elastogram (c). Elastogram in this 
subject with a normal liver showed mean shear stiffness value of 2.27 kPa.

a b c
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rhosis and complications such as portal hy-
pertension (cirrhosis-related varices, varice-
al hemorrhages, ascites) and hepatocellular 
carcinoma (HCC) can develop (9).

NAFLD is the most common liver disease 
in western countries and affects approxi-
mately 10%–30% of the general population 
(19). Its prevalence is expected to increase 
due to the rising incidence of obesity and 
type 2 diabetes mellitus (20, 21). The dis-
ease encompasses conditions ranging from  
simple steatosis to more progressive steato-
sis with necroinflammation (nonalcoholic 
steatohepatitis, NASH), fibrosis, and cirrho-
sis. Most patients have “simple steatosis” 
which has a relatively favorable course. Pro-
gression to NASH and further advancement 
to fibrosis may be observed in about 25% of 
patients with NAFLD (20, 22, 23). 

Liver biopsy is the gold standard method 
for the detection and staging of fibrosis. 
However, there are limitations to this meth-
od such as assessment of very small volume 
of parenchyma, the possibility of sampling 
errors, low reproducibility, and variability 
among the observers (24–26). In addition, 
it is an invasive method carrying severe 
complication risks including death, which 
reduces its preference by patients and doc-
tors (27). 

Noninvasive conventional imaging mo-
dalities such as US, CT, and MRI may show 
morphologic changes due to chronic liver 
disease. However, these methods are not 
successful in detecting early stage fibro-
sis and are not suitable for staging fibrosis 
(28). A variety of direct (procollagens, ma-
trix metalloproteinases, cytokines, chemo-
kines) and indirect (thrombocyte count, 
prothrombin time, albumin, total bilirubin, 
serum aminotransferase levels, hyaluronic 
acid and α2-macroglobulin levels) blood 
markers can be used to assess fibrosis. The 
advantages of serum tests are that they are 

readily available, cost effective and can be 
used for follow-up. However, their specific-
ity is low and cannot sufficiently reflect the 
complicated pathophysiologic status of the 
liver (29, 30). US elastography is a relative-
ly new and efficient method for evaluating 
liver fibrosis. The main clinical indication for 
liver elastography is the noninvasive detec-
tion and staging of fibrosis, follow-up and 
monitorization of the therapeutic response 
of fibrosis and assessment of portal hyper-
tension (31). In US elastography, the “shear 
wave” speed and the measured stiffness of 
the tissue depend on the applied frequen-
cy of the wave (32). The results are also 
highly operator dependent and subject to 
interpretive error; measurements can vary, 
even in the same patient. Furthermore, the 
reliability of US elastography can be low in 
cases presenting with hepatodiaphragmat-
ic interposition of the bowel, ascites, narrow 
intercostal space, and obesity (1, 3, 13, 33).

In the acoustic radiation force impulse 
(ARFI) elastography technique, the shear 
waves that stimulate the target tissue are 
generated within a fixed-size ROI placed 
on an operator-selected conventional gray-
scale US image (34). Due to the short-du-
ration acoustic radiation forces, localized 
displacements are generated in a selected 
ROI, not requiring any external compres-
sion. Hence, it is expected to be a less op-
erator-dependent method of assessing 
stiffness of the liver tissue (35). No signif-
icant difference was found between ARFI 
elastography and transient elastography 
(TE) when the accuracy rates were com-
pared (36). Failure rates for ARFI elastogra-
phy measurements are significantly lower 
than for TE (36, 37). In addition, since ROIs 
can be positioned on the elastograms at 
two planes, the measurements are less af-
fected by the presence of ascites and obe-
sity thereby reducing some of the sampling 

errors that can occur with TE. ARFI elastog-
raphy, when correlated with Child-Pugh 
scores and liver function tests, is more suc-
cessful than the scoring system based on 
visual assessment of conventional images 
(38). When entegrated with B mode US, 
ARFI elastography provides more reliable 
measurement results than TE and has sim-
ilar diagnostic efficacy with TE in detecting 
significant fibrosis and cirrhosis (36).

MRE is considered to be the most reliable 
noninvasive method for the detection and 
staging of liver fibrosis (3, 39, 40). Stiffness 
values of the liver obtained by MRE are re-
producible and show excellent aggrement 
between practitioners (41–43). In a me-
ta-analysis evaluating the reproducibility 
of hepatic MRE, Serai et al. (44), suggested 
that the measured change in hepatic stiff-
ness of 22% or greater, at the same site and 
with use of the same device and acquisition 
parameters, indicates that a true change 
in stiffness has occurred with 95% confi-
dence (44). Stiffness measurements can be 
performed from almost every part of the 
liver parenchyma if adequate wave quality 
is obtained. The possibility of sampling a 
large volume of parenchyma increases the 
accuracy of this technique. Moreover, un-
like US elastography, reliable results can be 
obtained in obese patients and in patients 
with ascites (9, 40, 45).

Clinical applications of MRE 
in the liver

The stiffness value of normal liver pa-
renchyma is less than 2.5 kPa (1, 13). MRE 
measurement of higher stiffness values can 
diagnose hepatic fibrosis with high sensitiv-
ity and specificity. The mean liver stiffness 
values in living donors have been report-
ed to range from 2.05 to 2.12 kPa and not 
differ significantly for either gender or age 
(42). The stiffness is increased in proportion 

Figure 4. a–c. A 62-year-old woman with hepatitis B virus infection. T2-weighted image (a), wave image (b), and elastogram (c). Measurements from the 
elastogram revealed elevated stiffness values with a mean of 6.20 kPa consistent with Stage 4 fibrosis.

a b c
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to the histologic grade of fibrosis. Different 
grades of fibrosis can also be differentiat-
ed with MRE (1, 3, 13) (Fig. 5). Studies have 
shown that early stages of liver fibrosis, 
which cannot be detected by routine im-
aging, can be demonstrated by MRE (9, 46, 
47). In a study reported by Yin et al. (9), it 
is shown that the sensitivity and specificity 
of MRE in detecting all grades of liver fibro-
sis was greater than 95% (9). According to 
a meta-analysis of 12 studies including 697 
patients with chronic liver disease, MRE 
shows high diagnostic performance for 
staging fibrosis. The area under receiving 
characteristic curve (AUC) is 0.93 for dis-
criminating advanced fibrosis (≥stage 3). 
MRE’s performance for diagnosis of signifi-
cant (≥ stage 2) and any fibrosis (≥ stage 1) 
is also good (AUC, 0.84–0.88). The optimal 
cutoff values of MRE for diagnosis of any, 
significant and advanced fibrosis and cir-
rhosis were derived from the pooled analy-
sis of patients with chronic liver disease and 
were found as 3.45, 3.66, 4.11, and 4.71 kPa, 
respectively (35). Wang et al. (10) reported 
high sensitivity and specificity values for 
MRE to predict fibrosis scores ≥F2 (91% and 
97%), scores ≥F3 (92% and 95%), and scores 
F4 (95% and 87%). In the same study, the 
cutoff values of 5.37 kPa and 5.97 kPa were 
determined to identify fibrosis stage ≥2 and 
stage ≥3, respectively (10).

The degree, pattern, distribution and ex-
tent of fibrosis can vary depending on the eti-
ology of chronic liver disease. For this reason, 
the thresholds used to determine the degree 
of fibrosis may also vary depending on the 
etiology. Detecting effective threshold values 
for different etiologies will be useful in stan-
dardizing the MRE technique. An increase in 
parenchymal stiffness can be seen in cases of 
acute inflammation without association of fi-
brosis (48). Prior injection of gadolinium che-
late compound does not seem to influence 
liver stiffness significantly (1). 

Liver fibrosis is not always homogeneous. 
This explains the sampling errors that can 
be seen in biopsy (49). MRE can detect het-
erogeneous involvement pattern of fibrosis 
in the liver parenchyma and reveal early fi-
brotic changes, which are often missed by 
biopsy due to the limited sampling area. 
MRE can also be used with the aim of guid-
ing biopsy (50). Another advantage of MRI 
compared with liver biopsy is its all-in-one 
evaluation capability. MRE technique is usu-
ally well tolerated by patients. In addition to 
MRE sequence, a routine liver protocol can 

Figure 6. a, b. A 68-year-old man with chronic liver disease. T2-weighted image (a) shows atrophic 
liver and massive ascites. The presence of ascites did not seem to influence the data acquisition in 
this patient. Confidence map (b) outlines the hepatic areas with sufficient wave propagation. There 
is considerable amount of liver parenchyma outside the cross-hatching marks from which stiffness 
measurements can be made.

a b

Figure 5. Relationship between MRE-measured stiffness of the liver and the stage of hepatic fibrosis. 
MRE can be used to stage fibrosis in various diffuse liver diseases.  For example, in this figure, the patient 
with stage 1-2 fibrosis has primary biliary cirrhosis and the patient with stage 4 fibrosis has primary 
sclerosing cholangitis. The patients with stage 2-3 and 3-4 fibrosis have hepatitis B virus infection. In 
color-coded elastogram, relative tissue stiffness is shown on a color scale, ranging from softest (0 kPa; 
color-coded with purple) to hardest (8 kPa; color-coded with red). The stiffness values correlated with 
the stage of fibrosis that we used in this figure were obtained from Table 3 in Srinivasa Babu et al. (1).

Figure 7. a, b. A 58-year-old man with Chilaiditi syndrome. T2-weighted image (a) shows a portion of the 
colon abnormally interposed between the liver and the diaphragm. The passive driver was shifted to left in 
order to optimize the delivery of the vibrations into the liver. Shear waves have adequate hepatic penetration 
in the left lobe. Normal hepatic stiffness (color-coded with blue) can be seen on confidence map (b).

a b
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be implemented during the examination. 
Especially, in living liver donor candidates, 
combined use of MRE and MRI fat quantifi-
cation can potentially reduce the necessity 
of routine liver biopsies by providing in-
formation regarding the risk of substantial 
macrovesicular hepatic steatosis or hepatic 
fibrosis (51). In this way, MRI can provide a 
comprehensive one-stop evaluation, there-
by shortening the preoperative work-up 
process in donor candidates. 

Obesity, ascites (Fig. 6), and hepatodi-
aphragmatic interposition of the bowel 

loops (Fig. 7), which limit the use of US elas-
tography, do not affect the MRE study (3). 
Fatty infiltration alone does not increase 
the liver stiffness in NAFLD (9) (Fig. 8). How-
ever, if steatohepatitis develops, an increase 
in liver stiffness is seen even before the on-
set of fibrosis (52) (Fig. 9). The other con-
founding factors that can alter liver stiffness 
are hepatic vascular congestion (Fig. 10), 
cholestasis (Fig. 11), amyloidosis (53), and 
fasting status (1, 13). 

MRE can also be used for characteriza-
tion of liver tumors. In benign tumors, the 

stiffness values are similar to or lower than 
that of the parenchyma, whereas in malign 
tumors, the stiffness values are higher (Fig. 
12). In the study conducted by Venkatesh 
et al. (54), the stiffness values of the malig-
nant masses were found to be greater than 
5 kPa. In a preliminary study conducted by 
Thompson et al. (55), it was shown that there 
might be a relationship between histopatho-
logic grading of HCC and the tumor stiffness. 
The authors noted that poorly differentiated 
HCCs tend to have higher stiffness than that 
of well- and moderately differentiated HCCs.

MRE has several limitations despite its 
considerable advantages over the other 
methods (39). During the MRE, patients 
need to hold their breath. For this reason, 
it is very important that respiratory coop-
eration of the patient is ensured in order 
to optimize the imaging. In addition to re-
peated patient breath holds, this method 
is not suitable for patients who cannot lie 
still or have claustrophobia. Furthermore, 
its worldwide availability is limited for use 
in routine practice.

The most frequent reason for technical 
failure in MRE is iron overload of the liv-
er tissue. In diseases that lead to moder-
ate-to-severe hepatic iron deposition such 

Figure 8. a–c. A 55-year-old woman with nonalcoholic fatty liver disease. According to HISTO sequence analysis (MR spectroscopy not shown) and 
fat fraction parametric map (a), fat signal fraction rates are elevated, 13.2% and 12.9%, respectively. Panel (b) shows the wave image. Elastogram (c) 
determined mean stiffness as 2.22 kPa which is within normal limits. Simple steatosis does not have a significant effect on stiffness values. 

a b c

Figure 9. a–c. A 58-year-old woman with nonalcoholic steatohepatitis (NASH). According to HISTO sequence analysis (MR spectroscopy not shown) and 
fat fraction map (a), fat signal fraction rates are 13.8% and 13.4%, respectively.  Panel (b) shows the wave image and panel (c) shows the elastogram. 
This patient had a mean liver stiffness of 3.10 kPa (range, 2.25–4.49 kPa). Biopsy showed steatohepatitis index as: steatosis +++, and inflammation ++. 
Necroinflammatory activity in NASH increases the hepatic stiffness values.

a b c

Figure 10. a, b. A 31-year-old man with Budd-Chiari syndrome. T2-weighted image (a) shows atrophy of the 
right liver lobe, hepatic contour nodularity, splenomegaly, and ascites. Elastogram (b) revealed mean shear 
stiffness value of 2.95 kPa. Hepatic venous congestion is one of the confounders, which elevates liver stiffness 
and may lead to overestimation of fibrosis stage. 

a b
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as hemochromatosis or hemosiderosis, MRI 
signals may be too low. The reason for the 
low signal-to-noise ratio is that the com-
mercially available sequences in the MRE 
applications are generally GRE sequences 
which are prone to T2* shortening due to 
iron overload (56). Kim et al. (57) reported 
that spin echo echo-planar imaging in pa-
tients with iron deposition is more success-
ful than GRE imaging (57).

Conclusion
Early detection and staging of liver fibro-

sis is of clinical importance. Although cur-
rently biopsy-based assessment remains 
the standard reference, MRE can be used 
as a noninvasive alternative to liver biopsy 
in detecting the presence and extent of fi-
brosis as well as in monitoring its response 
to therapy. Repeated assessments can be 
performed, without safety concerns. It has 
several advantageous aspects compared 
with biopsy such as high reproducibility 
and less sampling errors originating from 
uneven distribution of fibrosis in the liver 
or the small size of the specimen. It can be 
used satisfactorily in subjects with Chiliaditi 
syndrome and patients with ascites, and al-
lows the evaluation of morphologic chang-

es of chronic liver disease with routine MRI 
sequences added to the elastography ex-
amination protocol.
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